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1. BERTIN PLOTS

Among the rich material on graphical presentation of information, in (Bertin, 1977),
engl. (Bertin, 1999), J. Bertin discusses the presentation of data matrices, with a
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particular view to seriation. (de Falguerolles et al., 1997) gives an appraisal of this
aspect of Bertin’s work. The methods discussed in (de Falguerolles et al., 1997) have
been implemented in the Voyager system (Sawitzki, 1996). They have been partially
re-implemented in R, and this paper gives an introduction to the R implementation.

The R-implementation can be downloaded as a package bertin from http://bertin.
r-forge.r-project.org/. The paper (de Falguerolles et al., 1997) is included as
bertin.pdf in the documentation section of the package.

Bertin uses a small data set on hotel occupancy data to illustrate his ideas.

Jan | Fev | Mars | Avril | May | Juin | Juil | Aout | Sept | Oct | Nov | Dec
ClienteleFeminine 26 21 26 28 20 20 20 20 20 40 15 40
Locale 69 70 7 71 37 36 39 39 55 60 68 72
USA 7 6 3 6 23 14 19 14 9 6 8 8
AmerSud 0 0 0 0 8 6 6 4 2 12 0 0
Europe 20 15 14 15 23 27 22 30 27 19 19 17
MOrientAfrique 1 0 0 8 6 4 6 4 2 1 0 1
Asie 3 10 6 0 3 13 8 9 5 2 5 2
Business 78 80 85 86 85 87 70 76 87 85 87 80
Touristes 22 20 15 14 15 13 30 24 13 15 13 20
ResDirecte 70 70 78 74 69 68 74 75 68 68 64 75
ResAgents 20 18 19 17 27 27 19 19 26 27 21 15
EquipageAeriens 10 12 6 9 4 5 7 6 6 5 15 10
MoinsDe20 2 2 4 2 2 1 1 2 2 4 2 5
De20a55 25 27 37 35 25 25 27 28 24 30 24 30
De35ab5 48 49 42 48 54 55 53 51 55 46 55 43
PlusDeb55 25 22 17 15 19 19 19 19 19 20 19 22
Prix 163 | 167 166 174 | 152 | 155 | 145 170 157 | 174 | 165 | 156
Duree 1.65 | 1.71 1.65 1.91 1.9 2| 1.54 1.6 | 1.73 | 1.82 | 1.66 | 1.44
Occupation 67 82 70 83 74 s 56 62 90 92 78 55
Foires 0 0 0 1 1 1 0 0 1 1 1 1

Table 1: Bertin’s hotel data

2. BERTIN MATRICES

To repeat from (de Falguerolles et al., 1997): In abstract terms, a Bertin matrix is
a matrix of displays. Bertin matrices allow rearrangements to transform an initial
matrix to a more homogeneous structure. The rearrangements are row or column
permutations, and groupings of rows or columns. To fix ideas, think of a data matrix,
variable by case, with real valued variables. For each variable, draw a bar chart of
variable value by case. Highlight all bars representing a value above some sample
threshold for that variable (Figure 1 on page 3).

Variables are collected in a matrix to display the complete data set (Figure 2 on
page 3). By convention, Bertin shows variables in rows and cases in columns. To
make periodic structures more visible, the data are repeated cyclically.

As Bertin points out, the indexing used is arbitrary. You can rearrange rows and/or
columns to reveal the information of interest. If you run a hotel, of course the per-
centage of hotel occupation and the duration of the visits are most interesting for you.
Move these variables to the top of the display, and rearrange the other variables by
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Figure 1: Display of one variable: Hotel data. Observations above average are
highlighted in black.
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Figure 2: Display of a data matrix: Hotel data. Variables are shown as rows. To

make periodic structures more visible, time is duplicated. Observations above average
are highlighted.
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similarity or dissimilarity to these target variables (Figure 3 on page 4). Time points
have a natural order. No rearrangement is used here.
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Figure 3: Display of a data matrix: Hotel data. Variables are rearranged by simi-
larity to occupation and duration.

Variables need not enter at their face value; they can be transformed, or derived
variable can be added. In the case of the hotel data, this has already done in the
original data set. For example, the guests have been classified in tourists and business,
and both sum up to 100%. If we want, we can remove this redundant information.
This may clean up the picture. But it may hide information. For example, tourists
are “anti-cyclic” to the hotel occupation and just fill the gaps. Removing this variable
because it is (1 — business) would hide this point.
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Figure 4: Display of a data matrix: Hotel data. Variables are rearranged by simi-
larity to occupation and duration. Some redundancy removed.
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As a second example, we use the the USJudgeRatings data set (Figure 5 on page 7).
The data is listed in Table 2 on page 6.

CONT INTG DMNR DILG CFMG DECI PREP FAMI ORAL WRIT PHYS RTEN
AAR,L.H. 5.7 7.9 7.7 7.3 7.1 7.4 7.1 7.1 7.1 7.0 8.3 7.80
ALE,J.M. 6.8 8.9 8.8 8.5 7.8 8.1 8.0 8.0 7.8 7.9 8.5 8.7
ARM,A.J. 7.2 8.1 7.8 7.8 7.5 7.6 7.5 7.5 7.3 7.4 7.9 7.8
BER,R.I. 6.8 8.8 8.5 8.8 8.3 8.5 8.7 8.7 8.4 8.5 8.8 8.7
BRA,J.J. 7.3 6.4 4.3 6.5 6.0 6.2 5.7 5.7 5.1 5.3 5.5 4.8

BUR,E.B. 6.2 8.8 8.7 8.5 7.9 8.0 8.1 8.0 8.0 8.0 8.6 8.6
CAL,R.J. 10.6 9.0 8.9 8.7 8.5 8.5 8.5 8.5 8.6 8.4 9.1 9.0
COH,S.S. 7.0 5.9 4.9 5.1 5.4 5.9 4.8 5.1 4.7 4.9 6.8 5.0
DAL,J.J. 7.3 8.9 8.9 8.7 8.6 8.5 8.4 8.4 8.4 8.5 8.8 8.8

DAN,J.F. 8.2 7.9 6.7 8.1 7.9 8.0 7.9 8.1 7.7 7.8 8.5 7.9
DEA,H.H. 7.0 8.0 7.6 7.4 7.3 7.5 7.1 7.2 7.1 7.2 8.4 7.7
DEV,H.J. 6.5 8.0 7.6 7.2 7.0 7.1 6.9 7.0 7.0 7.1 6.9 7.2
DRI,P.J. 6.7 8.6 8.2 6.8 6.9 6.6 7.1 7.3 7.2 7.2 8.1 7.7
GRLA.E. 7.0 7.5 6.4 6.8 6.5 7.0 6.6 6.8 6.3 6.6 6.2 6.5
HAD,W.L.JR. 6.5 8.1 8.0 8.0 7.9 8.0 7.9 7.8 7.8 7.8 8.4 8.0

HAM,E.C. 7.3 8.0 7.4 7.7 7.3 7.3 7.3 7.2 7.1 7.2 8.0 7.6
HEA,A H. 8.0 7.6 6.6 7.2 6.5 6.5 6.8 6.7 6.4 6.5 6.9 6.7
HUL,T.C. 7.7 7.7 6.7 7.5 7.4 7.5 7.1 7.3 7.1 7.3 8.1 7.4

LEV,L 8.3 8.2 7.4 7.8 7.7 7.7 7.7 7.8 7.5 7.6 8.0 8.0
LEV,R.L. 9.6 6.9 5.7 6.6 6.9 6.6 6.2 6.0 5.8 5.8 7.2 6.0
MAR,L.F. 7.1 8.2 7.7 7.1 6.6 6.6 6.7 6.7 6.8 6.8 7.5 7.3
MCG,J.F. 7.6 7.3 6.9 6.8 6.7 6.8 6.4 6.3 6.3 6.3 7.4 6.6
MIG,A.F. 6.6 7.4 6.2 6.2 5.4 5.7 5.8 5.9 5.2 5.8 4.7 5.2

MISL,H.M. 6.2 8.3 8.1 7.7 7.4 7.3 7.3 7.3 7.2 7.3 7.8 7.6

MUL,H.M. 7.5 8.7 8.5 8.6 8.5 8.4 8.5 8.5 8.4 8.4 8.7 8.7
NAR,H.J. 7.8 8.9 8.7 8.9 8.7 8.8 8.9 9.0 8.8 8.9 9.0 9.0
O’BR,F.J. 7.1 8.5 8.3 8.0 7.9 7.9 7.8 7.8 7.8 7.7 8.3 8.2

O’SU,T.J. 7.5 9.0 8.9 8.7 8.4 8.5 8.4 8.3 8.3 8.3 8.8 8.7
PAS,L. 7.5 8.1 7.7 8.2 8.0 8.1 8.2 8.4 8.0 8.1 8.4 8.1
RUB,J.E. 7.1 9.2 9.0 9.0 8.4 8.6 9.1 9.1 8.9 9.0 8.9 9.2
SAD.G.A. 6.6 7.4 6.9 8.4 8.0 7.9 8.2 8.4 7.7 7.9 8.4 7.5
SAT,A.G. 8.4 8.0 7.9 7.9 7.8 7.8 7.6 7.4 7.4 7.4 8.1 7.9
SHE,D.M. 6.9 8.5 7.8 8.5 8.1 8.2 8.4 8.5 8.1 8.3 8.7 8.3
SHE,J.F.JR. 7.3 8.9 8.8 8.7 8.4 8.5 8.5 8.5 8.4 8.4 8.8 8.8

SID,W.J. 7.7 6.2 5.1 5.6 5.6 5.9 5.6 5.6 5.3 5.5 6.3 5.3
SPE,J.A. 8.5 8.3 8.1 8.3 8.4 8.2 8.2 8.1 7.9 8.0 8.0 8.2
SPO,M.J. 6.9 8.3 8.0 8.1 7.9 7.9 7.9 7.7 7.6 7.7 8.1 8.0

STA,J.F. 6.5 8.2 7.7 7.8 7.6 7.7 7.7 7.7 7.5 7.6 8.5 7.7
TES,R.J. 8.3 7.3 7.0 6.8 7.0 7.1 6.7 6.7 6.7 6.7 8.0 7.0
TIE,W.L.JR. 8.3 8.2 7.8 8.3 8.4 8.3 7.7 7.6 7.5 7.7 8.1 7.9
WAL,R.A. 9.0 7.0 5.9 7.0 7.0 7.2 6.9 6.9 6.5 6.6 7.6 6.6
WRID.B. 7.1 8.4 8.4 7.7 7.5 7.7 7.8 8.2 8.0 8.1 8.3 8.1
ZAR,K.J. 8.6 7.4 7.0 7.5 7.5 7.7 7.4 7.2 6.9 7.0 7.8 7.1

Table 2: US judge ratings

Both the cases (the judges) and the variables (the qualities) allow for a rearrangement.
Just sorting for row and column averages gives a more informative picture (Figure 6
on page 7). The number of contacts CONT stands out - it has a different structure
than the other variables. After all, this is not a rating variable at all, but ancillary
information. There is little reason why it should go along with the rating variables.
Judge G. A. Saden seems to be special. Most variables would rank him to the upper
group, be his worth of retention is below average. The esteem of his integrity and
demeanour go along with this. Overall, there is a very clear separation into an upper
and a lower group.
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US Judge Ratings
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Figure 5: Display of a data matrix: USJudgeRatings data. Lawyers’ ratings of
state judges in the US Superior Court. Original arrangement, judges by lexical order
of name.
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Figure 6: Display of a data matrix. USJudgeRatings data. Lawyers’ ratings of
state judges in the US Superior Court, rearranged.

We remove the variable CONT and re-run the analysis. Of course this changes the
average scores per judge, and the arrangement changes (Figure 7 on page 8).

The highlight features of the display give a clear picture of a rather homogeneous
upper and homogeneous lower group of judges. All criteria seem to say the same
in these groups. For a small intermediate group of cases, the variables seem to fall
into two or three groups, and it is only for this small group that a closer look at the
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Figure 7: Display of a data matrix. USJudgeRatings data Lawyers’ ratings of state
judges in the US Superior Court. Variable CONT removed, and rearranged.

variables and their meaning may be necessary. If you want to model the rating of the
worthiness of retention, say, as a function of the other ratings, it is only here that a
refined model might be necessary. For most judges, a rough model would do.

For this data set, the low resolution of the variables may be a problem. No details are
given in the documentation, but presumably the rating has been taken on a 1,...,10
scale, and in all variables the median is higher than 7. (only one data point, a contact
recorded as 10.6 does not fit into this and asks for explanation.) Changing the scale
may give a better contrast and improves the resolution (see Figure 8 on page 9). Here
we used the rescaled variables to define the height of the bars. For highlighting by
colour (only black/white here) we used the data in the original scale. Both display
attributes, height and colour, are independent and we are free to encode different
aspects of the data. In Figure 8 on page 9 we sorted the cases by the value of RTEN.
This lets us view the data from a different point of view.

Again we have a clear upper and lower group, with consistency over all variables, and
a small intermediate group which needs closer inspection. Judge G.A. Saden stands
out. By most criteria, he qualifies for a higher ranking, but demeanour and judicial
integrity go along with a low scored worthy of retention.

Two judges are on the boundary and may well be exchanged - this is where random
fluctuation may be at work to decide for the ranking.
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Figure 8: Data set: USJudgeRatings. Cases sorted by RTEN, variables sorted by
mean. Rescaled for range. CONT removed. Scores above mean are highlighted.
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At this early point, let us put Bertin’s work in place. Visualising information is but
one aspect. In statistics, as we see it today, visualisation may be one part of an
analysis. The outcome will be a decision leading to an action. Then there is a loss
(or gain) depending on the action taken on the one hand, and the “true” state of
the world on the other. This is the common decision theoretical setting. Statistics
has formulated a few standard problems, and given suggestions how to handle these.
In our Hotel example, the problem can be seen as a prediction problem: find a
prediction model to predict occupation and duration, based on the other variables.
More specifically this is a control problem, and the statistical contribution is to find
a regression model for occupation and duration, based on the other variables. The
visualisation can be seen as one way to hint at a regression model. There are very
few classical problems. Regression is one of them, and prediction is closely related.
Classification and clustering is another, closely related pair of problems, and their
relation to Bertin matrices should be obvious. The USJudgeRatings can be looked at
as a classification problem.

3. WORK FLOW

Bertin matrices usually are part of a work flow.

In a first step, we transfer the input data to allow for common, or comparable scales.
In the Hotel example, Bertin rescales by the maximum value of each variable. The
dichotomous variable Faires is encoded as 0/1. Our implementation default is to
rescale for (0, max) for positive variables, (min, 0) for negative variables, (min,
max) for general variables. Out preferred, or recommended rescaling however is to
use ranks. We use the term score for the rescaled variables. Orientation of the data
set is critical convention in this step. Usually, rescaling should be by variable, not by
case. Depending on the orientation, this can lead for example to ranks by row or by
column. We allow global scaling as an additional option for those situations where all
data are already on a common scale. Following Bertin, our implementation default is
to expect variables in rows, but we provide the means to switch to the R convention
with variables in columns. The raw data may come in data frames, or lists, or views
on a data base, and the original convention should be preserved. The scores however
are a matrix, or an array (which we consider a stacked list of matrices in our context.)
We prefer to keep these in Bertin conventions, that is variables are in rows.

In a second step, the scores are translated to visualisation attributes. Colour is
handled in two steps. The scores are translated to a colour index, which is used
together with a colour palette to determine the display colour for a data element.
This allows rapid experiments with various colour palettes, as long as the length of
the palettes are compatible. We strongly recommend to always look at the inverted
colour palette together with a chosen one to mitigate the effects of colour perception.
Simple image displays limit the visualisation attributes to colour. rect for example
allows rectangle geometry, colour, and border width. Shading and line types should
be considered as an alternative for print media.
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Visualisation attributes may reflect different aspects. So for example in the classical
Bertin display, height of a rectangle is used to reflect the value of a data element,
colour is used to show an indicator whether the value is above or below variable
mean.

A third step controls the actual placement of the graphical elements. With a matrix
layout, it is specified by possible permutations of rows and of columns. This may be
related to information used in the first two steps, but should be considered an inde-
pendent step. A vector or row orders and of column orders is the critical information
from this step. Various seriation methods apply. This is where Bertin’s ideas about
“internal mobility” as a characteristics of modern graphics come to action. The typi-
cal situation is to select scores and display attributes, and then search for optimal or
good seriations. The arrangement often leads to hard optimisation problems. Placing
this step later allows to use information from score transformation and attributes,
which may allow more efficient algorithms. In the end, we may be better with a good
solution which helps to solve the practical problem, instead of an optimal solution to
a theoretical one. These may differ considerably.

The final step is to merge these informations and render a display.

4. SCORES

In principle, scores can be generated using an appropriate score function and apply
or any of its variants. As examples, and for convenience, we provide a small collection
of score functions.

As an illustration, each is applied by row to the Hotel data set, and the result is shown
using a default Bertin plot. A second plot shows a poor man’s regression: assuming
that the hotel occupancy, variable 19, is the parameter of interest. Sort the scores by
correlation to the score of occupancy.

var.orientation = "byrow" is the default, it can be omitted. If needed in other
data sets, add var.orientation = "bycolumn" or var.orientation = "global".
This allows to follow our design decision to keep the original data following the original
conventions. The results here are matrices. They can be transposed at convenience.
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4.1. Ranks.
x — rank(z)

Input

oldpar <-par(mfcol=c(1,2))

hotelrank <- bertinrank(Hotel2)

plot.bertin(hotelrank)

hotelrankorder <- bertin:::ordercor(hotelrank, 19)

plot.bertin(hotelrank, roworder=hotelrankorder)

title(sub="Variable sorted by correlation to Occupation", cex.sub=1.4, line=1)

par (oldpar)
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Rank scores have a sound statistical basis. They bring us back to the field of rank
statistics. However, since they scale any rank difference by unit steps, they convey
order, but not quantitative differences. Preferably they are combined with colour
palettes which do not suggest a quantitative scale. The default colour palette uses
256 steps of grey and suggests a quantitative order, whereas the ranks by variable
provide at most 12 steps in this example.

It is preferable to use a palette with reduced resolution. For 12 rank values, a scale
with 3 or 4 steps should do.

Input

oldpar <-par(mfcol=c(1,2))
hotelrank <- bertinrank(Hotel2)
plot.bertin(hotelrank,
palette = gray((2:0 / 2)°0.5))
hotelrankorder <- bertin:::ordercor (hotelrank, 19)
plot.bertin(hotelrank, roworder=hotelrankorder,
palette = gray((2:0 / 2)70.5))
title(sub="Variable sorted by correlation to Occupation", cex.sub=1.4, line=1)
par (oldpar)
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4.2. z Scores.
xr — mean(x)

v sd(z)

Input

oldpar <-par(mfcol=c(1,2))

hotelzscore <- bertinzscore (Hotel2)
plot.bertin(hotelzscore)

hotelzscoreorder <- bertin:::ordercor (hotelzscore, 19)
plot.bertin(hotelzscore, roworder=hotelzscoreorder)
par(oldpar)
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Bertin uses to highlight “above average” observations. If the data is not degenerate,
this corresponds to bertinzscore > 0.

Since z scores center the variables around the mean, they require positive and negative
values for display. This leads in effect to a reduction of the display space to a half,
which should be compensated by a more expressive choice of colour coding.
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4.3. Range Scores.

py T min(x)

max(x) — min(x)

Input

oldpar <-par(mfcol=c(1,2))
hotelrangescore <- bertinrangescore(Hotel2)
plot.bertin(hotelrangescore)

hotelrangescoreorder <- bertin:::ordercor (hotelrangescore, 19)
plot.bertin(hotelrangescore, roworder=hotelrangescoreorder)
par (oldpar)
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This score just rescales to [0,1]. In contrast to ranks, it preserves quantitative pro-
portions. See Figure 8 on page 9.

5. PERMUTATION, SERIATION, ARRANGEMENT
As Bertin has pointed out,

Ce point est fondamental. C’est la mobilité interne de l'image qui char-
actérise la graphique moderne. [Bertin 1977, p. 5]

Once we have solved a problem in data analysis, the problem can often be formu-
lated as an optimisation problem. This is the end of the analysis process. In the
beginning, while we are searching for a solution, experimenting is necessary. In our
implementation, we separate two aspects.

Finding an adequate display is one. This amounts to building up a collection of proven
models. A specific data set at hand can contribute by hinting at specific needs and
simplify model choice. Building a collection of models and model choice is repeated
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not so often. Stability of implementation has priority over speed. We will provide a
small number of basic model implementations.

The other aspect is to identify critical information. The display, or graphical method,
is only giving a framework, and it needs to be filled. For a chosen display, for example,
we have to compare different arrangements (seriations, for example). If we allow for
interactive work, flexibility has priority. We try to cache the information that is
invariant of the permutation.

The classic Bertin display shown above is one of the examples to represent certain
models. Following the ideas, but deviating in the details, is to use a simple grey scale
image for representation. This may be not the most informative variant. But it is
most economic in the use of display space (Figure 10 on page 17).

Figure 10: Display of a data matrix as grey scale image: Hotel data. Variables are
rearranged by similarity to occupation and duration. Grey scale with 256 on the left,
reduced grey scale with 4 steps on the right, applied to zscores.

As a final aspect, display space is limited. The number of variables and cases that
can be displayed simultaneously is limited by the pixel size of the display. We can
increase it by one or two magnitudes by using a series of detail displays. Any display
calibration however should be constant for this series. We try to allow for this global
calibration (see Section 8 (page 44)).

So far, the interactive possibilities used in Voyager (Sawitzki, 1996) are not provided
in the R implementation, and only rudimentary parts of the static arrangements are
provided in R.
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6. PATCH STRATEGY

It may be useful to think of classical statistical methods and see how they may be
reflected in a Bertin setting. For a start, regression and classification may serve as
starting points. For both, traditional statistics has provided solutions, in the classical
framework as least squares regression and as discriminance analysis. Many variations
have followed.

Classification and regression trees (Breiman et al., 1984) have thrown a new light on
these problems. In principle, CART is a higher dimensional strategy. In the Bertin
context, we deliberately restrict ourselves to a two dimensional display context. CART
suggests to look for “patches”, rectangular areas that allow for an economic model.
CART uses a simple strategy, splitting one variable at a point. However this leads to
a fragmentation of the data material, dividing it on the average by a factor 2% for k
splits, and gives a corresponding penalty in terms of variance. Friedman (Friedman,
1996) has pointed out that this fragmentation is not necessary. Instead of one set
of patches you can have two: one used for estimation, and a second one, possibly
different, uses to apply the estimation for fitting. You want to keep the first one large
to control variance, and the second one small to reduce bias.

This is not implemented explicitly in the R implementation, but we suggest it as a
strategic guide. The examples provided in these notes follow this strategy.

The restriction to a matrix structure is arbitrary and can be omitted. Bertin has been
working as a cartographer, and his main work applies to geographical data. What we
call the Bertin matrices has been introduced in the very beginning of his book and
are but a starting point.

The high level routines accept the usual possibilities of R for subset and index manip-
ulation. As a convenience, the indices are accessible as function arguments. Certain
actions are provided as special functions. See the reference pages for details.

7. COLOUR, PERCEPTION AND PITFALLS

Colour is one of the simplest qualities, and barely understood. One basis of colour is
light, and if we follow todays physics this is best described as electromagnetic wave
with energy distributed over a spectrum of wavelengths. So the mathematical home
is some Hilbert space.

We do not know how light translates into perceived colour, but we know some of the
steps, and we have some artefacts that may help us to understand the process. Today,
the most helpful concept seems to be that of a colour space - a finite dimensional space
mapped into the true space of colours.

In a technical context as we see it today, colour became manageable with colour
displays using phosphors, coming in three colours (red, green and blue). The relative
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intensities of these colours are enough to specify the visual impact, and the RGB
space is still the basis space for colours presented on a display.

Of course there is a huge discrepancy between the full Hilbert space of lights, and
three dimensional RGB space. The gap is bridged by perception. Different spec-
tral distributions may give the same perceived colours. By mixing only few colours,
you can generate the impression to nearly cover a spectrum. Colours thus matched
perceptually are called metamers.

This leads to an experimental setup. Take the space of single frequency colours, i.e.
monochrome light. For each frequency, find a combination of red, green and blue to
match this colour.

What they tell us in school is that all colours can be mixed from three basic colours.
No, note quite. Not even for monochrome light. For many frequency, the impression
can be generated by an RGB combination. For several colours in the green range, it is
necessary to reduce the colour by a complement before it is accessible in RGB space.
See <http://www.statlab.uni-heidelberg.de/data/color/>. However the map-
ping from monochromous colour space to RGB space is fairly understood and allows
us to generate (within limits) the colour of any frequency if we can control RGB
values.

Technology requires differing spaces. While for displays we originally had three colours
encoded in RGB, for printing the readily available dyes ware cyan, magenta and
yellow, defining a CMY space. Fortunately these dyes could be calibrated to be
roughly complimentary to RGB, so we think of a colour cube with pure R, G, B on
three corners, C, M, Y on the opposite corners and an easy translation from RGB
to CMY coordinates. Today, quality colour printing is starting with six dyes, and a
more complex colour space is standard.

Still these technical colours are far away of the complexity of colours of light, and the
use of metamers is the way to cope with this discrepancy.

Colour spaces are just a means to specify colours, and the technical colour spaces are
a rough approximation of the possibilities. If we go from coloured light to perceived
colours, we have some information. Coloured light must be perceived by receptors, and
as of today it seems that the human eye has four kinds of receptors. There is a group of
receptors for black and white (or light intensity), the rods. Another group of receptors,
the cones, has a frequency dependent sensitivity, and the sensitivity characteristics
is known. An additional group seems to be only receptive for light/darkness. So
colour perception is effectively channelled through three colour channels. From the
analysis of colour deficiency, a model of the interaction of these channels can be derived
<http://www.statlab.uni-heidelberg.de/data/color/background.html>.

The distribution of these receptors is not homogeneous. It is a mental reconstruction
to perceive a homogeneous colour of some area. The is not sustained by primary
reception.
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Colour is perceived as a quality, and it is an open issue how to represent quantitative
information by colour. One basic aspect has been extensively studied: how to find a
colour scheme that allows to represent equidistant information by apparently equidis-
tant colours. Several suggestions have been developed, and the current consensus is
the CIELAB colour space. If you want to represent information on an interval scale
by colour, mapping it to CIELAB space is the first choice. However, very often the
data give information on a scale suggested by the measurement process available. An
interval scale may be the exception rather than the rule, and finding an appropriate
scale may be part of the challenge.

Colour may need some experiments to find an informative choice. To allow easy
experiments, we use a two step procedure. Based on the original data or the score,
we derive a colour index. From an abstract point of view, this is just another score
with values in 1,...,nrColours. Colours are provided as a colour palette, and in the
second step the index is used to select the colour to apply.

See help(palette) for information on colour palettes. library(colorspace) pro-
vides translations between several common colour spaces.

Some colour palettes that may be useful for Bertin displays are provided. For some
palettes, there are variants to highlight the tail behaviour. They are marked by a “2”
for quadratic and a “4” for a quartic flattening around the mid value which is mapped
to white.

There is an abundant literature on choosing colour palettes for the visual display of
quantitative information. Please read.

Be aware that not all people perceive colour the same way. In particular, if you are
using red and green in you colour palette, about 6% of the male population will have
difficulties.

Do trivial tests. If you have a smart colour scale: give a sample to some friends and
ask them to tell which shoes higher and which shows lower values.

Colour displays are a means to convey some information. Check that your choices
serve this purpose. In particular: if it is of importance to recognise high or low values,
chose a colour scale that does not focus on differences in neutral values.
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7.1. Colours. The basic colour specifications in R refer to the standard sRGB col-
orspace (IEC standard 61966). (R 2.15. This may change in future versions.) Several
colours have predefined names. These colour names can be used with a col= speci-
fication in graphics functions. An even wider variety of colours can be created with
primitives rgb, hsv, or hcl.

Note: not all colours may be printable, or have a faithful representation on the screen.
The range of visible colours may vary with the graphics system used.

Input

example (colors, package="grDevices")
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7.2. Colour Palettes. R provides six basic colour palettes.

Input
example (rainbow, package="grDevices"

color palettes; n= 100

grey(seq.int(from=0, to=1, length.out=n)

heat.colors(n)

terrain.colors(n)

cm.colors(n)

topo.colors(n)

rainbow(n)

0 20 40 60 80 100

grey and heat.colors palettes can be used to represent sequential quantitative data,
or more general ordinal data. Note the different calling conventions. grey allows to
specify breakpoints on [0,1]. heat.colors only allows to specify the number of
colours.

cm.colors, terrain. colors, and topo.colors allow to represent data between two
poles. Sometimes, these are called divergent scales.

rainbow is not useful for encoding quantitative data, or to give any reliable represen-
tation of qualitative data. They should be rather be considered as an example of what
can be done, and as a starting point for the selection of colours for more reasonable
scales.
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7.2.1. Brewer Palettes. For categorical data, a challenge is to find colours that are
visually clearly separated. Other requirements may apply, as to have “balanced”
palettes: no colours should have an excessive visual impact in comparison to others.

Cynthia Brewer et al. suggested a small collection of palettes with hand selected
colours for this task, and additional tools for selecting a palette for a specific purpose
are available at http://www.colorbrewer.org.

library("RColorBrewer")

Input

display.brewer.all (n=10, exact.n=FALSE)

YIOrRd 0 I I I B
YIOrBr | I R R
YIGnBu T —————
YIGn [ I I N R
Reds e ——————
RdPu 0 N I N R
Purples 0 I N R
PuRd O I N I R
PuBuGn e
PuBu [ N I I R
OrRd [0 I I N R
Oranges [ I N R
Greys [ N I N R
Greens [ N I N N
GnBu [ I N R
BuPu T ————
BuGn [ I N R
Blues [ N I N R
Set3 I R I
Set2
Set] N N I I
Pastel2
Pastell
Paired [ ] I I I I
Dark? s s s S e —
Accent I I N R
Spectral m——— [ N B
dYIGn I —— [ I I
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7.2.2. Home Made Palettes. Colour palettes can be constructed on the fly, or adapted
to certain purposes. If you do not need to doit: don’t. Try to get familiar with the
perceptual aspects of some well-established colour palettes, and try to adhere to these.

If you need to create your own palette, test it. What is the effect of this palette under

your "null model”? What is the discriminative power?

If your have to create your own palette, the basic tool is interpolation. It depends on
your view of the colour space. Here is linear interpolation in RGB space, with some

variants.

Input
oldpar <- par(mfrow=c(3,1))

colramp (RGBinterpolate (n=100, "green", "red"))

colramp (RGBinterpolate (n=100, "green", "red", bias=0.5))

colramp (RGBinterpolate (n=100, "green", "red", bias=2.0))
par (oldpar)

RGBinterpolate(n = 100, "green", "red")

20 40 60 80 100

RGBinterpolate(n = 100, “green", "red", bias = 0.5)

I

20 40 60 80 100

RGBinterpolate(n = 100, "green”, "red", bias = 2)

20 40 60 80 100



BERTIN MATRICES 25

You can sub-select palettes to focus on parts which have sufficient discriminative
power, and combine palettes by concatenating them.

Input
colramp( c(RGBinterpolate (n=20, "green", "red"), RGBinterpolate(n=30, "red", "blue")) .

c(RGBinterpolate(n = 20, "green", "red"), RGBinterpolate(n = 30,

20 40 60 80 100

For interpolation, piecewise linear interpolation and spline interpolation are obvious
choices, and both can be applied to more than two nodes to interpolate. R provides
colorRamp to generate and interpolating function

Input
mycolors <- c("red", "magenta", "blue")

cr <- colorRamp (mycolors)
colramp(cr( seq.int(from=0, to=1, length.out=15)))

cr(seq.int(from = 0, to = 1, length.out = 15))

 E — 1

20 40 60 80 100

Input
mycolors <- c("red", "magenta", "blue")

crp <- colorRampPalette (mycolors)
colramp (crp(100))
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crp(100)

S

20 40 60 80 100
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Bias 0.5, linear and spline interpolation, rgb space and Lab space.

27

Input
oldpar <- par(mfrow=c(4,1), mar=c(2, 1, 2, 1) + 0.1)
mycolors <- c("red", "magenta", "blue")

colramp(colorRampPalette (mycolors,
colramp(colorRampPalette (mycolors,
colramp(colorRampPalette (mycolors,
colramp (colorRampPalette (mycolors,
par (oldpar)

colorRampPalette(mycolors, space— "rgh",

space="rgb",
space="Lab",
space="rgb",
space="Lab",

interpolate="linear",
interpolate="linear",
interpolate="spline",
interpolate="spline",

interpolate = "linear",

bias=0.5) (100))
bias=0.5) (100))
bias=0.5) (100))
bias=0.5) (100))

20 40

colorRampPalette(mycolors, space— "Lab",

60

80

interpolate = "linear",

100

20 40

colorRampPalette(mycolors, space— "rgb",

60

80

interpolate = "spline”,

100

20 40

colorRampPalette(mycolors, space— "Lab",

60

80

interpolate = "spline”,

100
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100
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Bias 1.0, linear and spline interpolation, rgb space and Lab space.

Input
oldpar <- par(mfrow=c(4,1), mar=c(2, 1, 2, 1) + 0.1)
mycolors <- c("red", "magenta", "blue")
colramp(colorRampPalette (mycolors, space="rgb", interpolate="linear") (100))
colramp(colorRampPalette (mycolors, space="Lab", interpolate="linear") (100))
colramp(colorRampPalette (mycolors, space="rgb", interpolate="spline") (100))
colramp(colorRampPalette (mycolors, space="Lab", interpolate="spline") (100))
par (oldpar)

colorRampPalette(mycolors, space = "rgb", interpolate = "linear")(100)

20 40 60 80 100

colorRampPalette(mycolors, space = “Lab", interpolate = “linear")(100)

20 40 60 80 100

colorRampPalette(mycolors, space = "rgh", interpolate = "spline")(100)

20 40 60 80 100

colorRampPalette(mycolors, space = "Lab", interpolate = "spline")(100)

20 40 60 80 100
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Bias 2, linear and spline interpolation, rgb space and Lab space.

29

Input
oldpar <- par(mfrow=c(4,1), mar=c(2, 1, 2, 1) + 0.1)
mycolors <- c("red", "magenta", "blue")

colramp(colorRampPalette (mycolors, space="rgb", interpolate="linear",
colramp(colorRampPalette (mycolors, space="Lab", interpolate="linear",
colramp(colorRampPalette (mycolors, space='"rgb", interpolate="spline",
colramp (colorRampPalette (mycolors, space="Lab", interpolate="spline",

par (oldpar)

colorRampPalette(mycolors, space = "rgh", interpolate = "linear",

bias=2) (100))
bias=2) (100))
bias=2) (100))
bias=2) (100))

20 40 60

colorRampPalette(mycolors, space = "Lab", interpolate = "linear",

80

100

20 40 60

colorRampPalette(mycolors, space = "rgh", interpolate = "spline",

20 40 60

colorRampPalette(mycolors, space = "Lab", interpolate = "spline”,

80

80

100

100

20 40 60

80

100
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7.2.3. Bertin Colour Palettes. The calling structure for all Bertin colour palettes in
this section is the same. Here are just two examples.

Input
oldpar <- par(mfrow=c(2,1), mar=c(2, 1, 2, 1) + 0.1)

colramp (bertin:::red.colors(100), horizontal=TRUE)

colramp(bertin:::red.colors (100, rev=TRUE),horizontal=TRUE)
par (oldpar)

bertin:::red.colors(100)

20 40 60 80 100

bertin:::red.colors(100, rev = TRUE)

20 40 60 80 100

ut

In
oldpar <- par(mfrow=c(2,1), mar=c(2,ly, 2, 1) +0.1)
colramp (bertin:: :green.colors(100))

colramp(bertin:::green.colors (100, rev=TRUE))
par (oldpar)

bertin:::green.colors(100)

20 40 60 80 100

bertin:::green.colors(100, rev = TRUE)

20 40 60 80 100
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In RGB space, each palette has natural variants corresponding to gamma corrections.
Standardised on [0, 1], gamma correction replaces an intensity ¢ by ¢7. This is in
analogy to the channel gamma correction used technically. Following the terminology
used in R, the transformation parameter is called bias.

Note: it is up to discussion, whether v should modify the input intensity, or the
channel response. This may change.

Input
oldpar <- par(mfrow=c(3,1), mar=c(2, 1, 2, 1) + 0.1)

colramp(bertin:::red.colors(100, bias=0.5))
colramp(bertin:: :red.colors(100))
colramp(bertin:::red.colors(100, bias=1.5))
par (oldpar)

bertin:::red.colors(100, bias = 0.5)

20 40 60 80 100

bertin:::red.colors(100)

20 40 60 80 100

bertin:::red.colors(100, bias = 1.5)

20 40 60 80 100

ut

oldpar <- par(mfrow=c(3,1), mar=c(21,np1, 2, 1) +0.1)
colramp(bertin: : :wred.colors (100, bias=0.5))
colramp(bertin: : :wred.colors(100))

colramp(bertin: ::wred.colors (100, bias=1.5))

par (oldpar)
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bertin:::wred.colors(100, bias = 0.5)

— | |

—I | |

20 40 60 80 100
bertin:::wred.colors(100)
i
20 40 60 80 100
bertin:::wred.colors(100, bias = 1.5)
i
20 40 60 80 100
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7.2.4. Basic Colour Palettes.

bertin:::red.colors(100)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII!

20 40 60 80 100

bertin:::red.colors(100, rev = TRUE)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII!

20 40 60 80 100

bertin:::wred.colors(100)

IIIIII!IIIIIIIF | I

20 40 60 80 100

bertin:::wred.colors(100, rev = TRUE)

| | T —

20 40 60 80 100
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bertin:::green.colors(100)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII‘

20 40 60 80 100

bertin:::green.colors(100, rev = TRUE)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII‘

20 40 60 80 100

bertin:::wgreen.colors(100)

I I I I
20 40 60 80 100

bertin:::wgreen.colors(100, rev = TRUE)

1

I I I I
20 40 60 80 100
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bertin:::blue.colors(100)

#

20 40 60 80 100

bertin:::blue.colors(100, rev = TRUE)

#

20 40 60 80 100

bertin:::wblue.colors(100)

“ | I

20 40 60 80 100

bertin:::wblue.colors(100, rev = TRUE)

| | w

20 40 60 80 100

35
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bertin:::wcyan.colors(100)

I I I I
20 40 60 80 100

bertin:::wcyan.colors(100, rev = TRUE)

I I I I
20 40 60 80 100

bertin:::wmagenta.colors(100)

I I I _

20 40 60 80 100

bertin:::wmagenta.colors(100, rev = TRUE)

— I I I

20 40 60 80 100

bertin:::wyellow.colors(100)

I I I I
20 40 60 80 100

bertin:::wyellow.colors(100, rev = TRUE)

I I I I
20 40 60 80 100
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7.2.5. Contrast Colour Palettes. If high and low values should be considered of dif-
ferent qualities, a contrast palette may be appropriate instead of a sequential palette.
These palettes are also called “divergent” palettes.

Blue-yellow: This is a rather stable palette, with less than 0.1%readers being affected
by colour vision peculiarities. Scale interpretation seeing yellow as higher is also very
stable.

bertin:::blueyellow.colors(100)

IIIIII!FIIIIIIIFIIIIIIIF |

20 40 60 80 100

bertin:::blueyellow.colors(100, rev = TRUE)

| *IIIIIIIFIIIIIIIFIIIIII‘

20 40 60 80 100

Variant of the above, highlighting the tails and attenuating the centre. For an appli-
cation, see Section 9.2 Case Studies: cDNA Data (page 48). This is a rather stable
palette, with less than 0.1% readers being affected by colour vision particularities.
Scale interpretation seeing yellow as higher is also very stable.

bertin:::blueyellow2.colors(100)

I I I I
20 40 60 80 100

bertin:::blueyellow2.colors(100, rev = TRUE)

I I I I _

20 40 60 80 100
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bertin:::blueyellow4.colors(100)

I I I I
20 40 60 80 100

bertin:::blueyellow4.colors(100, rev = TRUE)

I I I I q

20 40 60 80 100
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bertin:::bluered.colors(100)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII‘

20 40 60 80 100

bertin:::bluered.colors(100, rev = TRUE)

IIIIII!FIIIIIIqIIIIIII!IIIIIIIHIIIIIII‘

20 40 60 80 100

bertin:::bluered2.colors(100)

|

I I I I
20 40 60 80 100

bertin:::bluered2.colors(100, rev = TRUE)

I

I I I I
20 40 60 80 100

bertin:::bluered4.colors(100)

— I I I I q

20 40 60 80 100

bertin:::bluered4.colors(100, rev = TRUE)

_— I I I I q

20 40 60 80 100

39
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bertin:::greenred2.colors(100)

q

20 40 60 80 100
bertin:::greenred2.colors(100, rev = TRUE)
I I I I
20 40 60 80 100

bertin:::greenred4.colors(100)

q

20 40 60 80 100
bertin:::greenred4.colors(100, rev = TRUE)
I I I I
20 40 60 80 100
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7.2.6. Tail Colours.

In (Tukey, 1991), J. Tukey suggested to use a drastic reduction of information for
analysis with many covariates. The tail palettes are provided to support a graphical
variant of this strategy.

Note: This variant is poor for dichromers.

bertin:::tail.colors(100)

I I I I -

20 40 60 80 100

bertin:::tail.colors(100, rev = TRUE)

I I I I
20 40 60 80 100
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7.3. Using Inverted Palettes. Perception is an active process, and any visual pre-
sentation may be swayed by the intricacies of perception. Colour perception is par-
ticularly complex. When working with colour (and this includes black and white), we
strongly suggest to have a look at the image with inverted colours as well.

Here is a sample implementation. On the R level, provide a plotting function

Input
sampleimagem <- function(z,

palette = grey((1:256)/256), xlab, ylab, main = NULL,

colinvert=FALSE){

if (colinvert) palette <- palette[length(palette):1]

# x1, x2. y1, y2

oldpar <- par(fig=c(0, 1, 0.2, 1),
mar=c(2.5,1.5,0.5,0.5), new=FALSE)

imagem(z, palette=palette)

par(yaxt="n", fig=c(0, 1, 0, 0.2),
mar=c(3.5,12.0,0.5,12.0), new=TRUE)
# colramp(col=palette, horizontal=TRUE)
zrange <- range(z, finite=TRUE)
image (z=t (matrix (seq(zrange[1],zrange[2],length.out=length(palette)),
1, length(palette))),
zlim=zrange,main="", ylab="", xlab="", col=palette)
par (oldpar)
}

and run it with colinvert=FALSE and colinvert=TRUE . If your are using Sweave,
use two separate chunks, and place the figure output side by side using TEX.

Input
hotelrk <- bertinrank(Hotel)
sampleimagem (hotelrk)

See Figure 11 on page 43 left.
Input

sampleimagem(hotelrk, colinvert=TRUE

See Figure 11 on page 43 right.
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Figure 11: Test matrix: same information, but colour table inverted on the right.
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8. COORDINATE SYSTEM AND CONVENTIONS

We provide prototypes for the display of Bertin matrices. To simplify the implemen-
tation of extensions, we choose a coordinate system that allots a unit square to each
matrix cell. If we want to add separator lines to structure our data, we have to reserve
some space sepwd, measured in user space.

To recall: the basic graphic system of R shows the proper content in a plot region,

with additional information such as axis and labels in an imbedding figure region
(Figure 12 on page 44).

Outer margin 3

Figure Region

Plot Region

Outer margin 2
Outer margin 4

Outer margin 1

Figure 12: Graphic regions. From (Murrell, 2011)

The figure and its contents is presented on a device, which may allow for an outer
margin for exceptional purposes. This gives rise to a list oft parameters as in Figure
13 on page 45. The device space may be allotted to several figures, leading to a
hierarchy of coordinate systems and displays (Figure 14 on page 45).

By convention, for a matrix x the data x[i, jJ] is displayed in a unit square with
bottom left corner at (i, j). Coordinates follow matrix conventions, that is the y
axis is pointing downwards and the top right corner of this cell is at (i+1, j-1).
The space allocated to the matrix fills defines the plot region. The basic functions
imagem() and bertinrect will adjust (shrink) this region to match the aspect ratio
of the matrix and establish a user coordinate system with top=0, bottom=nrow(x),
left= 1, right=ncol(x).

Additional graphical elements can be used immediately, using this coordinate system.
image uses the centre of a cell as an anchor point, and shows a transposed view. To

use image to generate an overlay, change the user coordinate system temporarily to
par("usr")-0.5 and use t().
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din[1]
fin[1]
omal2] :_ pin[1] : pmal4]
omi[2] : L 5 pmif4]
| E
mar[2] , E
mai[2] ;
E
' =
plt[1]
omd[1] L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
pit2]
omd[2]

Figure 13: Graphic parameters. From (Murrell, 2011)

Outer margin 3

Figure 1 Figure 2

Figure 4

Outer margin 2
o
c
3
@
3
2
b
&l
Pyl
@
Q
o
=]
Outer margin 4

Figure 5 Figure 6

Outer margin 1

Figure 14: Graphic parameters. From (Murrell, 2011)

Space for row names and column names is allocated in the inner margins of the figure
area. By convention, if a parameter mar is provided, this will be added. If a parameter
pars is provided, it is assumed to contain the user’s choice of graphic parameters and
will be taken “as is”, without further adjustment.

We return the relevant graphical parameters as an invisible result in the basic func-
tions imagem() and bertinrect (). This can be passed as pars to generate graphics
with consistent layout.
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The higher level functions may attach the actual parameters as attributes to the data,
or retrieve from there if provided. Details are subject to change.

If colour encoding is used, a colour ramp should be provided as a key for interpretation.
The higher level functions can imbed a colour ramp in the inner margin. While this
is an additional picture, this is hidden and the colour ramp appears as an annotation.
Other mechanisms for arranging plots on a device should not be affected.
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9. CASE STUDIES

9.1. Borderline Data. Figure 15 on page 47 shows the raw data from (Ebner-
Priemer and Sawitzki, 2007). A colour palette has been chosen to highlight main
structures. The data represent tension levels, recorded by 15 minute intervals, in for
control group and for borderline patients. In this representation, to overall difference
between controls (top rows) and patients (bottom rows) is obvious. But this is an
obvious difference under clinical conditions. What is not obvious, but revealed in
this display, is that there is a very small number of “controls” who show a tension
characteristic similar to the patients. The stress characteristics in the patient group
shows a higher variation. But there is a clear subgroup showing “normal” stress char-
acteristics. This can be seen in the inverted colour plot, but is nearly hidden in the
original colour plot.

Time resolution 60 min Time resolution 60 min

100
100

80
80

60
60
|

idindex Ctl
idindex Ctl

Pat
40
Pat
40

1

[ ]

[ ]

20
20
|

= —
e
-

- Bl

° e R "_

Time index (60 min)

Tension Level Tension Level

Figure 15: Borderline data. Tension level, all observations, by time. Spot the cases
in the control group (Id index > 50) that have tension levels fitting into the patient
group rather than the control group.
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9.2. cDNA Data. In 2-dye cDNA data, hybridisation results are measured using a
colour scan, with two samples applied simultaneously to any one microscope slide.
The dyes uses for the samples can be recovered by colour separation. Background
noise is a major concern. Standard techniques from image analysis is to spot intensity
and background intensity for each spot on the slide.Figure 16 on page 49 shows the
colour separated channels for foreground and background for one chip. See (Sawitzki,
2002) for details.

This display is used in the quality control of the process. The aim is to decide about
the quality of a chip, or of a production protocol. The identification of differentially
expressed genes, and ultimately the identification of tumour genes is a different ques-
tion. To interpret the plot, you need some information about the null behaviour. The
probes are not spotted at random, but selected from gene libraries. In this case two
libraries have been used, one of kidney related genes, and one of presumably tumour
related genes. You expect differences between the upper half and lower half, reflect-
ing these libraries. Not all spots have been used, and you expect bands of unused
spots. But other inhomogeneities are informative, for example the accumulation of
bad spots on this chip on the sides, which here comes from an asymmetry in handling
the incubation cells for the chip - a production problem which can be overcome, once
you have identified it.
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Figure 16: cDNA data. Channel intensities for red and green channel of a cDNA
scan (foreground and background).
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10. TEST MATRICES

To test the implementation, a series of matrices is provided. Each matrix is shown in
four displays: as an image using default setting of the low level function imagem, as an
image using the default setting of image.bertin, as a rectangle display using the low
level function bertinrect and as a display using the default setting of plot.bertin.

Input
testplot <- function(z, main=deparse%;ubstitute(z)))

{

oldpar <- par(mfcol=c(2,2))
bertinrect(z, main= main)
title(sub="bertinrect", line=1, cex.sub=1.2)

par (mfg=c(1,2)) # fix for stray display allocation
imagem(z, main= main)
title(sub="imagem", line=1, cex.sub=1.2)

par(mfg=c(2,1)) # fix for stray display allocation -- this is very bad
plot.bertin(z, main= main)
par(mfg=c(2,1)) # fix for stray display allocation -- this is very very bad
title(sub="plot.bertin", line=0, cex.sub=1.2)
par(mfg=c(2,2)) # fix for stray display allocation
image.bertin(z, main= main)
title(sub="image.bertin", line=0, cex.sub=1.2)
par (oldpar)

10.1. Pure Vanilla Random Matrices. The most simple case: all variables are on
a common scale, and the sequence is given (no seriation possible) or irrelevant (no
seriation necessary).

If we want to build test matrices, there are two free parameters to be set, for example

Input

BMExplRows=8
BMExplCols=6

Typical cases are :

BMExplUnif <- matrix( runif(BMEprE%Eg;BMEXplCols),
nrow= BMExplRows, ncol= BMExplCols)
BMExplNorm <- matrix( rnorm(BMExplRows*BMExplCols),
nrow= BMExplRows, ncol= BMExplCols)
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BMExplUnif BMExplUnif
Co— ] l_ll_l
I_I|_| —
=
i -
] — ]
[

] L]
bertinrect imagem
BMExplUnif BMExplUnif
——— =
— =

HEEm =
i | .
H m=_1
Bl - -

plot.bertin |mcage.bert|n

Score Colour Codes (by %) Score Colour Codes (by %)

0 20 40 60 80 100 0 20 40 60 80 100

Random uniform, using default settings.
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BMExpINorm
—/ —
——
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L

L
[

|_,|_|I_l

I —

bertinrect

BMExpINorm

——_ W

plot.bertin

Score Colour Codes (by %)

0 20 40 60 80

Random normal, using default settings.

BMExpINorm

imagem

BMExpINorm

image.

Score Colour Codes (by %)

40 60



BERTIN MATRICES 53

10.2. Vanilla. The next round of test cases are numeric, but not on a common scale.
We provide some test vectors which we can use to construct various test matrices.

Input
# Test vectors, used to build a matrix

Bzero <- rep(0, BMExplCols)
Bone <- rep(1, BMExplCols)
Bmone <- rep(-1, BMExplCols)
Binc <- (1:BMExplCols)/BMExplCols
Bdec <- (BMExplCols:1)/BMExplCols
Bstep <- c(Bmone[1:floor(BMExplCols/2)],

Bone [ (1+floor (BMExplCols/2)) :BMExplCols])
Bhat <- Bone
Bhat [ (floor (BMExplCols/3)+1) : (BMExplCols-floor (BMExplCols/3)) 1 <- 0.5
Bnazero <- rep(c(NA,0),length.out= BMExplCols)
Bnanzero <- rep(c(NaN,0),length.out= BMExplCols)
Binf <- rep(c(Inf,0,-Inf),length.out= BMExplCols)
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10.2.1. Basic Test Matrices.

Input

Brmatrix <- rbind(Bhat, Bzero, Bone, Bmone, Binc, Bdec, Bstep)
colnames (Brmatrix) <- colnames(Brmatrix, FALSE)

See Table 3 on page 54.

coll col2 «col3 col4d cold col6
Bhat | 1.00 1.00 0.50 0.50 1.00 1.00
Bzero | 0.00 0.00 0.00 0.00 0.00 0.00
Bone | 1.00 1.00 1.00 1.00 1.00 1.00
Bmone | -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Binc | 0.17 0.33 0.50 0.67 0.83 1.00
Bdec| 1.00 0.83 0.67 050 0.33 0.17
Bstep | -1.00 -1.00 -1.00 1.00 1.00 1.00

Table 3: Brmatrix: test matrix, by row.
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prmatrix

coll
col2
col3
cold
cols
col6

Bzero

Bone

Bmone

L b

bertinrect

Brmatrix

HE - El

Bzero

coll
col2
col3
cold
col5
col6

Bone

Bmone

pa——

plot.bertin
Score Colour Codes (by %)
0 20 40 60 80 100
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Brmatrix

coll
col2
col3
col4
col5
col6

Bhat

Bzero

Bone

Bmone

Binc

Bdec

Bstep

imagem

Brmatrix

coll
col2
col3

=
3
8

col5
col6

Bhat

Bzero

Bmone

il

Image.bertin

Score Colour Codes (by %)

0 20 40 60 80 100

Test matrix by row, using default settings

R may use internal housekeeping to keep matrix columns homogeneous. Check! Use

row matrix and column matrix for tests.

Input

Bcmatrix <- cbind(Bhat, Bzero, Bone, Bmone, Binc, Bdec, Bstep)
rownames (Bcmatrix) <- rownames (Bcmatrix,FALSE)

See Table 4 on page 56.
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Bhat Bzero Bone Bmone Binc Bdec Bstep
rowl | 1.00 0.00 1.00 -1.00 0.17 1.00 -1.00
row2 | 1.00 0.00 1.00 -1.00 0.33 0.83 -1.00
row3 | 0.50 0.00 1.00 -1.00 0.50 0.67 -1.00
rowd | 0.50 0.00 1.00 -1.00 0.67 0.50 1.00
rowb | 1.00 0.00 1.00 -1.00 0.83 0.33 1.00
row6 | 1.00 0.00 1.00 -1.00 1.00 0.17 1.00

Table 4: Bcmatrix: test matrix, by column.

Bcmatrix Bcmatrix
L] L]
rowl rowl
L] L] —
row2 row2
— —l ]
row3 row3
— [ —
rowd rowd
L] L] —
rows rows
L] L]
rowé rowé
bertinrect imagem
Bcmatrix Bcmatrix
B -
Il B ..
] ™
=e_ N o "
] [ ]

== N e
L] .

Il B =
L] -

Il B BB

plot.bertin image.bertin

Score Colour Codes (by %) Score Colour Codes (by %)

60 80 100

[ 20 40 60 80 100 0 20 40

Test matrix by column, using default settings
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10.2.2. Basic Test Matrices With Normal Random Error.

Input
BrRndmatrix <- Brmatrix+rnorm(nrow(Brmatrix)*ncol (Brmatrix))

pBrnamatix prnarnauix

]
L]

Bone

colL
col2
col3
cold.
cols
col6
colt
col2
col3
cold.
col5
colé

Bmone

Binc

Bdec Bdec
L]
Bstep Bstep
bertinrect imagem
BrRndmatrix BrRndmatrix

coll
col2
col3
cold
cols
col6

Bhat
-l = .

L1

==l
= —

—_ =

.
=
Bstep
plot.bertin image.bertin
Score Colour Codes (by %) Score Colour Codes (by %)
o 20 40 60 80 100 0 20 40 60 80 100

Test matrix by row with normal random error, using default settings
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10.3. Test Matrices With IEEE Specials.

Input
Brmatrixx <- rbind(Bhat, Bzero, Bone, Bmone, Binc, Bdec, Bstep,

Bnazero, Bnanzero, Binf)

See Table 5 on page 58.

1 2 3 4 5 6
Bhat | 1.00 1.00 0.50 0.50 1.00 1.00
Bzero| 0.00 0.00 0.00 0.00 0.00 0.00
Bone | 1.00 1.00 1.00 1.00 1.00 1.00

Bmone | -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Binc | 0.17 0.33 0.50 0.67 0.83 1.00
Bdec | 1.00 0.83 0.67 0.50 0.33 0.17

Bstep | -1.00 -1.00 -1.00 1.00 1.00 1.00
Bnazero 0.00 0.00 0.00
Bnanzero 0.00 0.00 0.00
Binf| Inf 0.00 -Inf Inf 0.00 -Inf

Table 5: Brmatrixx: matrix with special values, by row. NaN and NA values are
not printed.
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10.3.1. Test Matriz With IEEE Specials By Row, Using Default Settings.

Input

Bcmatrixx <- cbind(Bhat, Bzero, Bone, Bmone, Binc, Bdec, Bstep,
Bnazero, Bnanzero, Binf)
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10.3.2. Test Matrixz With IEEE Specials by Column, Using Default Settings.

Input

61

BrRndmatrixx <- Brmatrixx+rnorm(nrow(Brmatrixx)*ncol (Brmatrixx))
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